Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available May 12, 2026
-
The multiplication rates of pathogenic organisms influence disease progression, efficacy of immunity and therapeutics, and potential for within-host evolution. Thus, accurate estimates of multiplication rates are essential for biological understanding. We recently showed that common methods for inferring multiplication rates from malaria infection data substantially overestimate true values (i.e. under simulated scenarios), providing context for extraordinarily large estimates in human malaria parasites. A key unknown is whether this bias arises specifically from malaria parasite biology or represents a broader concern. Here, we identify the potential for biased multiplication rate estimates across pathogenic organisms with different developmental biology by generalizing a within-host malaria model. We find that diverse patterns of developmental sampling bias—the change in detectability over developmental age—reliably generate overestimates of the fold change in abundance, obscuring not just true growth rates but potentially even whether populations are expanding or declining. This pattern emerges whenever synchrony—the degree to which development is synchronized across the population of pathogenic organisms comprising an infection—decays with time. Only with simulated increases in synchrony do we find noticeable underestimates of multiplication rates. Obtaining robust estimates of multiplication rates may require accounting for diverse patterns of synchrony in pathogenic organisms. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’.more » « lessFree, publicly-accessible full text available January 23, 2026
-
The recent pandemic emphasized the need to consider the role of human behavior in shaping epidemic dynamics. In particular, it is necessary to extend beyond the classical epidemiological structures to fully capture the interplay between the spread of disease and how people respond. Here, we focus on the challenge of incorporating change in human behavior in the form of “risk response” into compartmental epidemiological models, where humans adapt their actions in response to their perceived risk of becoming infected. The review examines 37 papers containing over 40 compartmental models, categorizing them into two fundamentally distinct classes: exogenous and endogenous approaches to modeling risk response. While in exogenous approaches, human behavior is often included using different fixed parameter values for certain time periods, endogenous approaches seek for a mechanism internal to the model to explain changes in human behavior as a function of the state of disease. We further discuss two different formulations within endogenous models as implicit versus explicit representation of information diffusion. This analysis provides insights for modelers in selecting an appropriate framework for epidemic modeling.more » « lessFree, publicly-accessible full text available January 1, 2026
-
COVID-19 highlighted the importance of considering human behavior change when modeling disease dynamics. This led to developing various models that incorporate human behavior. Our objective is to contribute to an in-depth, mathematical examination of such models. Here, we consider a simple deterministic compartmental model with endogenous incorporation of human behavior (i.e., behavioral feedback) through transmission in a classic Susceptible–Exposed–Infectious–Recovered (SEIR) structure. Despite its simplicity, the SEIR structure with behavior (SEIRb) was shown to perform well in forecasting, especially compared to more complicated models. We contrast this model with an SEIR model that excludes endogenous incorporation of behavior. Both models assume permanent immunity to COVID-19, so we also consider a modification of the models which include waning immunity (SEIRS and SEIRSb). We perform equilibria, sensitivity, and identifiability analyses on all models and examine the fidelity of the models to replicate COVID-19 data across the United States. Endogenous incorporation of behavior significantly improves a model’s ability to produce realistic outbreaks. While the two endogenous models are similar with respect to identifiability and sensitivity, the SEIRSb model, with the more accurate assumption of the waning immunity, strengthens the initial SEIRb model by allowing for the existence of an endemic equilibrium, a realistic feature of COVID-19 dynamics. When fitting the model to data, we further consider the addition of simple seasonality affecting disease transmission to highlight the explanatory power of the models.more » « less
-
In the first two years of the COVID-19 pandemic, per capita mortality varied by more than a hundredfold across countries, despite most implementing similar nonpharmaceutical interventions. Factors such as policy stringency, gross domestic product, and age distribution explain only a small fraction of mortality variation. To address this puzzle, we built on a previously validated pandemic model in which perceived risk altered societal responses affecting SARS-CoV-2 transmission. Using data from more than 100 countries, we found that a key factor explaining heterogeneous death rates was not the policy responses themselves but rather variation in responsiveness. Responsiveness measures how sensitive communities are to evolving mortality risks and how readily they adopt nonpharmaceutical interventions in response, to curb transmission. We further found that responsiveness correlated with two cultural constructs across countries: uncertainty avoidance and power distance. Our findings show that more responsive adoption of similar policies saves many lives, with important implications for the design and implementation of responses to future outbreaks.more » « less
-
null (Ed.)Abstract Background Mosquitoes are vectors for diseases such as dengue, malaria and La Crosse virus that significantly impact the human population. When multiple mosquito species are present, the competition between species may alter population dynamics as well as disease spread. Two mosquito species, Aedes albopictus and Aedes triseriatus , both inhabit areas where La Crosse virus is found. Infection of Aedes albopictus by the parasite Ascogregarina taiwanensis and Aedes triseriatus by the parasite Ascogregarina barretti can decrease a mosquito’s fitness, respectively. In particular, the decrease in fitness of Aedes albopictus occurs through the impact of Ascogregarina taiwanensis on female fecundity, larval development rate, and larval mortality and may impact its initial competitive advantage over Aedes triseriatus during invasion. Methods We examine the effects of parasitism of gregarine parasites on Aedes albopictus and triseriatus population dynamics and competition with a focus on when Aedes albopictus is new to an area. We build a compartmental model including competition between Aedes albopictus and triseriatus while under parasitism of the gregarine parasites. Using parameters based on the literature, we simulate the dynamics and analyze the equilibrium population proportion of the two species. We consider the presence of both parasites and potential dilution effects. Results We show that increased levels of parasitism in Aedes albopictus will decrease the initial competitive advantage of the species over Aedes triseriatus and increase the survivorship of Aedes triseriatus . We find Aedes albopictus is better able to invade when there is more extreme parasitism of Aedes triseriatus . Furthermore, although the transient dynamics differ, dilution of the parasite density through uptake by both species does not alter the equilibrium population sizes of either species. Conclusions Mosquito population dynamics are affected by many factors, such as abiotic factors (e.g. temperature and humidity) and competition between mosquito species. This is especially true when multiple mosquito species are vying to live in the same area. Knowledge of how population dynamics are affected by gregarine parasites among competing species can inform future mosquito control efforts and help prevent the spread of vector-borne disease.more » « less
-
Perkins, Alex (Ed.)Mosquitoes vector harmful pathogens that infect millions of people every year, and developing approaches to effectively control mosquitoes is a topic of great interest. However, the success of many control measures is highly dependent upon ecological, physiological, and life history traits of mosquito species. The behavior of mosquitoes and their potential to vector pathogens can also be impacted by these traits. One trait of interest is mosquito body mass, which depends upon many factors associated with the environment in which juvenile mosquitoes develop. Our experiments examined the impact of larval density on the body mass of Aedes aegypti mosquitoes, which are important vectors of dengue, Zika, yellow fever, and other pathogens. To investigate the interactions between the larval environment and mosquito body mass, we built a discrete time mathematical model that incorporates body mass, larval density, and food availability and fit the model to our experimental data. We considered three categories of model complexity informed by data, and selected the best model within each category using Akaike’s Information Criterion. We found that the larval environment is an important determinant of the body mass of mosquitoes upon emergence. Furthermore, we found that larval density has greater impact on body mass of adults at emergence than on development time, and that inclusion of density dependence in the survival of female aquatic stages in models is important. We discuss the implications of our results for the control of Aedes mosquitoes and on their potential to spread disease.more » « less
An official website of the United States government
